Aura Validation Program Status

Aura instruments produce 63 data products that need validation.

Validation activities up to 09/05 ~ 1 year after Aura activation:

- AVDC is up and running heavy usage
- Validation workshop Sept. 05.
- Aircraft Field Campaigns
 - Two Houston WB-57 mini-campaigns
 - One polar DC-8 mini-campaign
 - UAV payload and plans moving forward
- Two high altitude instrumented balloon flights from Palestine, TX
- Two intensive H₂O and O₃ sonde campaigns in Costa Rica
- Additional sondes launched from traditional sites
- Numerous satellite intercomparisons
 - UARS HALOE
 - ACE
 - Envisat
 - Odin, SBUV, etc.

Aura Validation Campaign Timeline

B = high altitude balloons b = sonde campaign

Jan. 04	– pre-AVE- (Costa Rica)				
Aug. 04	Ticosonde I (Costa Rica)	Completed activities			
Oct. 04	Houston AVE I				
Jan. 05	– PAVE	Planned activities			
Jan. 05	Polar high altitude balloon launch (failed)	Augmentations			
June 05	Houston AVE II	7 13.6111 31113113113			
July-Aug. 05	Ticosonde II campaign - Costa Rica				
Sept. 05	Validation Workshop I				
Sept. 05	High altitude balloon launch				
JanFeb. 06	 Costa Rica AVE (CR-AVE) (payload increased) 				
Jan. 06	Polar high altitude balloons (replaced failed launch)				
JanFeb. 06	Ticosonde campaign - Costa Rica (added)				
Mar Apr. 06	– INTEX-B (Houston, Anchorage, Hawaii) (lidars added)				
April 06	Sodänkyla High latitude ozone column intercomparison campaign				
Jan. 07	– AVE/TC4 winter (Guam) + sonde campaign				
Aug. 07	AVE (IPY) - still under discussion				

Summary of Relevant Sept. Validation Workshop Results - where we are now

- Tropospheric ozone profiles
- Temperature
- Water
- NO₂, HCHO
- · CO

Tropospheric Ozone Profiles

Most validation is associated with TES (profiles) and OMI TOR.

TOR = Total ozone residual

Ozone Profiles

- -- High spatial correlation between TES retrieved and GEOS-Chem simulated tropospheric ozone.
- Largest difference in the upper troposphere: systematic high bias in TES
- New TES calibration scheme will improve the comparison in the upper troposphere with no significant impact in the lower troposphere.
- TOR (OMI-MLS) Good early results, need more MLS comparisons at 215 mb needed.

Temperature

- MLS and TES are main focus (HIRDLS not ready)
- Good leverage off AIRS validation MLS

- TES UT warm bias and LT cold bias are due to known calibration problems which will be fixed in next version (Version 9).
- MLS biases at upper and lower range needs to look at additional lines beside "core" for UT/LS and mesosphere

TES Water

Good leverage off AIRS validation TES vs Sonde and Aircraft

TES vs AIRS

- TES H₂O compares to within 20% of AIRS & sondes
- Improvements will occur with change in calibration (Version 9)

MLS and Balloon Comparisons, Ft. Sumner, Sep. 2004: H₂O red: MLS blue: Mk IV Sept 23/24 2004

MLS Water

MLS vs Balloon
MLS vs Satellite

Summary of Satellite Intercomparisons

Pressure,	Vertical Resolution,	"True" Precision,	Estimated Precision	Estimated Accuracy Difference Difference		
hPa	km	ppmv	ppmv	HALOE	SAGEII	ACE
0.1	7	0.3	0.8	+10%		-10%
1	5	0.1	0.3	+5%	-15%	-3%
10	4	0.1	0.3	+5%	+10%	-1%
100	3	0.8	0.5	+15%	+5%	-5%

CFH soundings
8 - 25 July 2005
San Jose, Costa Rica
10°N, 84.21°W

Balloon ascent

MLS

MLS

Water Vapor [ppmv]

- More Upper Trop validation is needed
- Known algorithm issues in the upper trop
- Need to extend vertical range

Radicals

Species	Column	Profile	Validation	Status
NO ₂	OMI		Ground based column, Satellite	Good start, need lower trop. profiles
НСНО	ОМІ		Aircraft, Satellite	Still analyzing PAVE data
BrO	OMI	MLS	Balloon, aircraft	Models
OCIO	OMI		Balloon, aircraft	Product not available yet
ОН		MLS	Balloon & ground based column	Balloon profiles and ground based comparisons
HO ₂		MLS	Balloon	No validation yet

OMI NO₂

Compared to Brewer

Max DOAS Cabauw, Netherlands (51°N)

More observations of NO₂ profiles are needed NO₂ & HCOH:

— compare DC-8 profiles, OMI columns

HNO₃

MLS shows relatively high observations near peak

- Discrepancy at peak may be due to microwave (or IR) spectroscopy errors.
- TES will begin work on HNO₃ limb soon

CO

MLS and TES

Worst case, MLS

Major artifacts exist in MLS data (will be addressed in V2.0):

- Large oscillations
- Some negative CO volume mixing ratios
- Enhanced CO in winter polar lower stratosphere, due to not including HNO₃ lines **TES vs MLS** MLS CO Upper trop. VMR are higher than TES at low latitudes and lower than TES at high latitudes.

• TES CO

TES and MOPITT

Argus Comparisons

CO Comparison with MOPITT and Argus show some bias

- · Generally the agreement is not too bad
- A priori can have a huge influence on the profile if the averaging kernals are similar to each other (e.g. no information in the radiances for isothermal profile)
- Improved CO should come from changing the optical bench temperature (improves the alignment) in TES this will take place in November

What we have learned so far...

Validation activities have clearly shown where Aura data is useful for science. From the instrument side:

MLS

- Spectroscopic issues need work (interfering gases)
- Algorithm (S/N) issues have shown up (e.g. CO)

TES

- Calibration issues will be significantly improved in V9
- Comparisons with S-HIS show small translator velocity errors in TES

OMI

- Algorithm issues at high latitudes mainly in DOAS products
- Products which have low S/N are affected by stripping (i.e. OCIO)
- Assumed trace gas profiles in the lower troposphere affect column calculations need better a priori's

HIRDLS

Intensive validation will start in '06

What we are looking for from INTEX

- Stratosphere and UT/LS O₃ and T for HIRDLS
 - INTEX flights should include night measurements along HIRDLS track (will also help MLS & TES)
- Tropospheric measurements for MLS, OMI & TES
 - Specific sub-satellite spirals (CO, T, H₂O, HNO₃, O₃, NO₂)
- Improved sonde coincidences (AVDC web tool + more active management)
 - HIRDLS and TES have a priority look at who is closest to sonde site at overpass time - may be an hour apart.

The End

Ozone Column

OMI TOMS and DOAS algorithms, TES column

Aerosols, Clouds and SO₂

TES, OMI and MLS (Cloud ice)

- MLS Cloud Ice has almost no validation
- OMI Aerosols are in good shape comparisons to Aeronet
- HIRDLS aerosol product has had some preliminary comparisons
- TES vs MODIS cloud top pressure show some bias
- SO₂ needs more tropospheric (OMI) and stratospheric (MLS) validation

Stratospheric Ozone Profiles

- Most validation is associated with MLS.
- HIRDLS is coming on line and will be the focus of sondes and stratospheric lidar profiles in '06

MLS Stratospheric Ozone

- A small slope in differences vs height exists but varies between data sets
- MLS lower limit is 215 mb with upper limit of 0.46 mb for now
- Need to investigate bias could be spectroscopy; for slope could be pointing
- Larger issues in the UT/LS ozone has team priority